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Oscillation of viscous drops with smoothed particle hydrodynamics
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We investigate the nonlinear oscillations of heat-conductive, viscous, liquid drops in vacuum with zero
gravity, using smoothed particle hydrodynamics (SPH). The liquid drops are modeled as a van der Waals fluid
in two dimensions so that the models apply to flat, disklike drops. Attention is focused on small- to large-
amplitude oscillations of drops that are released from a static elliptic shape. We find that for small-amplitude
motions the combined dissipative effects of finite viscosity and heat conduction induce rapid decay of the
oscillations after a few periods, while for large-amplitude motions wave damping is governed by the action
of both viscous dissipation and surface tension forces. The transition from periodic to aperiodic decay at
Re~1 as well as the quadratic decrease of the frequency with the initial aspect ratio at large Re are reproduced
in good agreement with previous theoretical predictions and experimental results.
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I. INTRODUCTION

Earlier studies of infinitesimal-amplitude oscillations of
incompressible liquid drops about the spherical shape in
vacuum take as their starting point the classical work by
Lord Rayleigh [1] and Lord Kelvin [2]. The former author
demonstrated that the normal-mode frequencies for an oscil-
lating drop of density p and radius R, when the attainment of
the spherical shape is governed by interfacial forces, are
given by
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where o is the surface tension and n=2,3,..., stands for the
mode number. The counterpart of Eq. (1) for two-
dimensional drops oscillating about a circle is [1]
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An oscillating, two-dimensional (planar) drop is physically
represented by an infinitely long cylinder undergoing trans-
lationally symmetric deformations. The second author de-
rived the corresponding analytical expressions for the fre-
quency when the oscillating globe is held together by
gravitational forces (see also Ref. [3]). Seventy years later,
Chandrasekhar [4] provided an analytical solution to the
damping of Kelvin modes by viscous dissipation. Later on,
Reid [5] found that for arbitrary viscosity, the damping of a
fluctuating drop in a tenuous gas is the same for gravity and
surface tension. A number of other linear analyses has been
performed in more recent times [6—8]. In particular, Prosper-
etti [8] studied the initial-value problem posed by the small-
amplitude oscillations of free drops (i.e., drops surrounded
by a dynamically inactive environment such as the vacuum
or a low-density gas), gas bubbles, and drops in a host liquid.
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Using an alternative approach to the normal-mode technique,
based on the use of Laplace transforms, he found that for
small viscosities the motion consists of modulated damped
oscillations, with varying frequency and damping parameter.
In the case of free drops he found that initially the motion is
that executed by a damped harmonic oscillator of natural
frequency ' =(w?—b*)'"?, where

o \12 1
b,=(n—-1)2n+ ])<pR3) Re (3)
is the damping parameter, Re=(poR)'"?/ 7 is the Reynolds
number, and 7 is the dynamic (shear) viscosity. Prosperetti’s
analysis also predicted a transition from periodic to aperiodic
decay of the oscillations at low Re.

A second-order analytical solution for the oscillations of
free inviscid drops, starting from moderate-amplitude defor-
mations, was obtained by Tsamopoulos and Brown [9] by
means of a Poincaré-Lindstedt expansion technique. Their
analysis predicts a quadratic decrease of the oscillation fre-
quency with the initial amplitude and the coupling between
the linear modes, yielding the approximate expression for the
frequency

w’; = wn[l - ’yC121 + O(Ci)], (4)

where ¢, is the initial amplitude and y=0.638 76 for the
fundamental n=2 mode.

Motivated by the importance of containerless processing
technology in space, further studies of nonlinear drop oscil-
lations have concentrated either on detailed numerical calcu-
lations or experiments with zero gravity. The first numerical
simulations were performed by Foote [10], Alonso [11], and
Lundgren and Mansour [12]. In particular, the latter authors
used a boundary-integral method to calculate the large-
amplitude motion of axisymmetric, slightly viscous (Re
=2000) drops, finding that a small viscosity may have a
relatively large effect on resonant-mode coupling. In addi-
tion, Patzek er al. [13] confirmed the predictions of Refs.
[9,12] for large-amplitude oscillations of inviscid drops, us-
ing a Galerkin’s weighted residual method. The effects of
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finite viscosity were first elucidated by Basaran [14], who
performed Galerkin/finite-element-based calculations of non-
linear drop oscillations for 0.1 <Re =100, focusing on drops
released from a second spherical harmonic shape. An alter-
native approach for studying viscous drop oscillations with
large amplitudes was presented by Becker er al. [15], who
solved the Navier-Stokes equations using a method based on
mode expansions. They found that frequency modulation and
mode coupling are dominant, even in the case of small de-
formations. For large-amplitude oscillations, they obtained a
general good agreement with the results of Refs. [12,14].
Mashayek and Ashgriz [16], using finite-element methods,
calculated the nonlinear oscillations of drops with internal
circulation, starting from second-, third-, fourth-, and fifth-
mode spherical harmonic deformations. They showed that
the internal circulation has significant effects on the fre-
quency and damping rate during the first few periods of os-
cillation. Further calculations based on finite-element meth-
ods have recently been reported by Meradji et al. [17] for
freely oscillating, viscous drops without internal circulation.
While most of these calculations apply to axisymmetric os-
cillations of non-rotating, globular drops, Patzek et al. [18]
investigated the nonlinear oscillations of two-dimensional,
inviscid drops under the effects of rotation. They found that a
major difference between the dynamics of nonrotating globu-
lar and rotating planar drops is in the type of surface waves
that occur along the interface separating the drops from the
surrounding medium. In particular, these waves are in the
form of simple standing waves for the former drops, while
the latter ones exhibit a complicated pattern of travelling and
running capillary waves whose amplitudes grow with an in-
creasing size of the rotation rate. Furthermore, the axisym-
metric evolution of free liquid filaments, i.e., drops with very
large initial aspect ratios of up to 1:60, have been calculated
by Schulkes [19], and more recently, by Notz and Basaran
[20], using finite-element methods. The latter authors have
shown that filaments with Re= 10 contract to their equilib-
rium spherical shapes without breaking into droplets, regard-
less of their initial elongation. When Re= 10, very long fila-
ments pinch off daughter drops from their ends through the
so-called end-pinching mechanism. For smaller elongations,
the filaments undergo a sequence of complex oscillations that
ultimately lead to breakup. Such oscillations, however, may
also dissipate and lead to a final equilibrium spherical shape
for even smaller initial elongations.

Experiments simulating zero gravity usually rely on some
kind of levitation, which provides a freely floating drop,
more or less spherical, and an optical detector to record the
surface oscillations of the drop. For current liquids, acoustic
levitation is the most common technique [21], while for lig-
uid metals, electromagnetic levitation is the mostly used
method [22]. The experimental observations of Trinh and
Wang [23], based on acoustically levitated drops, confirmed
the predictions of the linear theory for the frequency at
small-amplitude oscillations. For large-amplitude oscilla-
tions, they found that the frequency decreases with the
square of the initial amplitude in accordance with the
second-order analysis of Ref. [9]. Experimental data of os-
cillating ethanol droplets in air, produced by the controlled
breakup of a laminar jet discharging from a convergent
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nozzle, were obtained by Becker er al. [24]. They observed
mode coupling and asymmetries in the oscillation amplitude
of high-order modes only for drops with initial n=2 defor-
mations larger than about 10% of their spherical radius. A
new containerless method based on gas-film levitation of a
liquid for measuring viscosity variations in fluctuating drops
has been described by Popoular and Parayre [25]. For small-
amplitude oscillations (=10% of the drop diameter) of levi-
tated water-glycerol drops, they observed that both their geo-
metrical aspect and the resonance profile are dissymmetric in
general. Microgravity observations on board the Space
Shuttle Columbia were reported by Wang er al. [26] and
Apfel et al. [27]. In particular, the latter authors described the
axisymmetric, quadrupole-mode oscillations of a surfactant-
bearing water drop the size of a ping-pong ball over a com-
plete period. Using a boundary-integral method they also re-
produced the observed drop shapes.

Here we describe the results of numerical calculations of
small- to large-amplitude oscillations of free liquid drops
with 0.52<Re =522, using the method of smoothed particle
hydrodynamics (SPH). The liquid is modeled as a van der
Waals (vdW) fluid and the effects of heat conduction are
included. The fluctuating drops all start from a perfectly el-
liptic shape, rather than a pure spherical harmonic deforma-
tion, in order to mimic the initial shape of the acoustically
deformed water drop in the microgravity experiment of Ref.
[27]. We limit ourselves to two-space dimensions so that the
unperturbed drops are represented computationally by an in-
finitely thin, circular disk. Unlike Patzek et al. [18], we con-
sider arbitrary viscosity and limit our analysis only to non-
rotating drops. Apart from a few model calculations reported
by Nugent and Posch [28], and more recently by Tartakovsky
and Meakin [29], there is an almost complete lack of SPH
calculations of oscillating liquid drops. We study the effects
of varying the initial aspect ratio, the amount of viscosity,
and the coefficient of thermal conductivity on the long-term
evolution and compare with other theoretical and experimen-
tal results.

II. BASIC EQUATIONS AND SPH FORMULATION

The problem of a fluctuating liquid drop in a vacuum
environment involves the solution of the equations of mass,
momentum, and energy conservation for an incompressible
fluid volume bounded by a free surface that separates the
liquid from the outer vacuum. If viscous and heat-conduction
effects are added, these equations become

dp
Lo _,v.y, 5
Ly PV (5)
av 1
T_Cv.T, (6)
dt p
au 1 1
—=-T:Vv-—-V .q, (7)
dr p p

where v is the velocity vector and U is the specific internal
energy. Here T and q are the stress tensor and heat-flux
vector, given by
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T:—p1+[77(VV+VVt)+((—gn)(v'v)l], (8)

and
q=-«VT, 9)

respectively, where the notation ’ in Eq. (8) means transpo-
sition. Here p is the isotropic pressure, 7 is the fluid tempera-
ture, { is the bulk viscosity, « is the coefficient of heat con-
duction, d is the spatial dimension, and 1 is the unit tensor.

If the fluid is truly incompressible Eq. (5) becomes V-v
=0, while Eq. (6) reduces to the Navier-Stokes equations for
an incompressible fluid. We restrict ourselves to two dimen-
sions, d=2, and write Egs. (5)—(9) in Cartesian coordinates
so that v=(v,,v,), q=(q,.q,), and only the xx, xy, and yy
components of the stress tensor T are retained. With this
geometry, all variables are only functions of the (x,y) coor-
dinates and time ¢. A spherical drop would then be repre-
sented by an infinitely thin, circular disk, with its oscillations
about the spherical shape being quantified in terms of the
deformations of the disk perimeter about its unperturbed cir-
cular shape.

The previous equations are closed by the mechanical and
caloric equations of state for the pressure, p, and internal
energy per unit mass, U, respectively. As in Ref. [28], we
consider the vdW equations of state,

kT
p=" G, (10)
1-pBp
and
=§%BT—ap, (11)

which are obtained in the mean-field limit for the free energy
density of a system of hard particles of radius r,. Here kp

=kg/m, a=alm?, B:B/m, and & is the number of degrees of
freedom for the particles, where kg is the Boltzmann’s con-
stant, « is the cohesive action, 3 is a constant parameter due
to the finite size of the particles, and m is the mass particle.
In two dimensions, ,8:27'rr% and £=2.

Standard SPH, coupled with an adaptive density kernel
estimation procedure as described by Silverman [30], is used
to solve Egs. (5)—(7). A detailed account of the method can
be found in Ref. [31], where it has been applied to incom-
pressible flow in a pipe, and in Ref. [32], where it has been
used to model compressible flows with strong shocks. Here
we shall only provide a brief description of the method. As it
is almost always used in SPH simulations, the continuity
equation (5) is replaced by an interpolant summation for the
density at each point. For particle 7, this summation is

N
pi=2m,~W,¢,~, (12)
j=1

where W;;=W(|x,—x/|,h) is the kernel interpolation function
and & is a measure of its width. The summation includes the
contribution of particle i itself and conserves the total mass
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exactly. In principle, it is taken over all sample particles
though in practice only the nearest neighbors contribute be-
cause of the finite range of the kernel. Following Bonet and
Lok [33], the use of Eq. (12) demands that the SPH replace-
ments for the momentum and thermal energy equations must
be written in symmetrized form in order to preserve varia-
tional consistency. We use symmetrized forms of the particle
equations of motion and thermal energy that contain the full
Newtonian stress tensor T and heat-flux vector q (see Ref.

[28]),

N
dv; T; T,
—lzzm'<_l+_]>'viwi" (13)
dt Jj=1 ! p12 .? ’
N
du; 1 T T,
avi_ 2 mj(—2 n —;):(Vj v)V.W;
dl 2]‘:] pl j
N ¢ q
S %) v, 04
j=1 pPi  P;

where the colon in the second equation indicates a double
dot product. The velocity gradients and the velocity diver-
gence involved in the definition of the stress tensor (8) are
evaluated by means of the SPH expansions,

N
1
(Vv),= ;2 mj(Vj_Vi)ViWijv (15)

ij=1

and

N

(V-vyi= S mv-v) VW (16)
Pi j=1

respectively. An expansion similar to Eq. (15) is used to

evaluate the temperature gradient needed for the heat flux in

Eq. (9). The position of particle i is determined by means of

the equation

dx;
0 Vv, (17)
which must be solved simultaneously with Egs. (12)—(14).

Equations (13) and (14) are suitable for treating com-
pressible fluids with arbitrary shear and bulk viscosities.
However, it has been shown in Ref. [31] that if they are
combined with the pressure-gradient correction proposed by
Morris et al. [34], they are also suitable for treating incom-
pressible flows accurately. Linearization of the vdW equa-
tions of state (10) and (11) gives the pressure variation in
terms of the density and temperature variations,

kgp

1-pBp

p=ctop+ or, (18)

where
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]; T 1/2
= (%—wp) : (19)
(1-Bp)*

is the sound speed. It can be shown that for relatively large
K, as used in this work, temperature fluctuations are effi-
ciently eradicated by the high thermal conductivity and/or
temperature gradients. Thus 67<<1 and so 5p~cf op, with a
good approximation. Incompressibility (i.e., dp<<1) would
then require having dp<<1. In general, incompressible fluids
have a speed of sound much larger than the speed v of the
bulk flow, implying that the relative fluctuations in density
Op/ p, which are proportional to the square of the Mach num-
ber, M=v/c,, are very small [35]. Since this is often the case
for the damped oscillations of a liquid drop, we find that the
flow incompressibility is well reproduced by the above SPH
formulation, with no need of implementing the pressure-
gradient corrections suggested by Morris et al. [34].

The accuracy and stability of standard SPH is signifi-
cantly improved when the smoothing is performed adap-
tively by means of a density kernel estimation similar to that
described by Silverman [30]. The idea behind this class of
estimates is to construct a collection of local kernels centered
at the positions of the particles in order to allow the band-
width, A, to vary from point to point. In order to do so, we
first compute an initial (or pilot) density estimate, p;, using
Eq. (12) written as

N

= 2 ij(|Xl'—X] ,hi’o), (20)
j=1

where £, can be defined as some dilation factor of the initial

interparticle separation. Local bandwidth factors, say \;, are

next constructed according to the relation

)\,-zk(%>_€, (21)
g

where k is a constant scaling factor of the order of unity, € is
the sensitivity parameter defined in the interval O0se=<|1,
and g is the geometric mean of the pilot estimates, calculated
as

N

1 .
logg=—2, log f;. (22)
Ni=1

As a final step, the adaptive estimator is obtained by defining
the width of the kernel at the position of particle i as h;
=\;h; and by recalculating the density using Eq. (20) with
h; replaced by h;. When & — 1, the \;’s become more sen-
sitive to variations in the pilot density distribution, implying
a greater difference of the %;’s in different parts of the
sample. On the contrary, e=0 leads to the usual kernel ap-
proach, provided that k=1 in Eq. (21). This method com-
bines intrinsic features of both the kernel and nearest neigh-
bor approaches so that the amount of smoothing applied to
the data is effectively minimized. This improves the stability
of standard SPH in the vecinity of strong shocks [32] and
removes the tensile instability for a wide range of the param-
eters k and & [36]. In order to improve the conservation of
linear momentum, angular momentum, and total energy, the
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kernel estimate is symmetrized with respect to particle pairs
by replacing %; by the mean h;;=(h;+h;)/2. In this way, the
final kernel employed in Egs. (12)-(14) is W,;=W(|x;
—X;|,h;). In this work, we adopt the quartic spline kernel of
Lucy [37]. With this kernel only nearest particles within a
circular zone of influence of radius A; around particle i con-
tribute to the SPH summations in Eqgs. (12)—(14).

A predictor-corrector leapfrog integrator is used to ad-
vance the position, velocity, and thermal energy of the par-
ticles through a complete time step, At=¢*'—¢. In the pre-
dictor stage, quantities are first evolved to the intermediate
time, *'/2, using the sequence

X£+1/2 l 1/2+AIV
Vf”/z v + —At(dv> ,
2 \dt);
du\!
Ut =yl + At (23)
dt /;

Intermediate values of the density and temperature are next
determined from x> and U'*"* using Egs. (12) and (11),
respectively. With these updates, the time-centered pressure

is obtained from Eq. (10). The acceleration, (dv/ dt)f”/ 2 and

the time rate of change of the thermal energy, (dU/dt)!*'"

are next calculated for use in the corrector step,

1+1

X, = x + At Vl+1/2

d 1+1/2
vt =yl +At( V) ,
dt/,
dUu +1/2
Ut =Ul+ Afl — , (24)
1 1 dt ;

from which final updates of the density, temperature, and
pressure are computed. To maintain numerical stability with
the above explicit scheme, the time step must be limited by
the CFL condition (see Ref. [38]). However, for the calcula-
tions of this paper a constant time step (Ar=0.005) was
enough to guarantee numerical stability. Although the present
calculations are constrained to two-space dimensions, the ex-
tension of the method to handle full three-dimensional drops
is straightforward.

III. UNPERTURBED DROP MODEL

The oscillating drop models all start from an elliptic shape
obtained by deforming a stable circular drop, as shown in
Fig. 1. The circular drop is constructed numerically by start-
ing the calculation with a square-cell array of 900 SPH par-
ticles of equal mass. Initially all particles are at rest with a
dimensionless separation distance As=0.75 along the x and y
axes. We adopt the same vdW parameters of Nugent and
Posch [28], namely m;=m=1, @=2, B=0.5, and kz=1 in
reduced units. This choice leads to a vdW fluid whose critical
point occurs for p,=2/3, p,=8/27, and T,=32/27 [35].
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: FIG. 1. Reference circular drop in equilibrium
1 (left panel) and deformed elliptic drops with pro-
] late aspect ratios a/b=2 (middle panel), and
alb=4 (right panel) after homogeneous flatten-
ing by pure shear strain.
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The initial density and temperature are chosen such that they

obey the constraints p,<< 1/B and EBTO>2&pO(1 —,[7}p0)2 for
thermodynamic stability. These inequalities are satisfied by
assigning a uniform temperature 7,=0.2 to each particle and
by determining the density from Eq. (12) with &, =3 As. We
further choose =1, {=1, and k=5 in reduced units along
with the adaptive kernel estimation parameters k=0.9 and
£=0.6. With a subcritical temperature of 0.2, a stable circular
drop of smoothed central density p(0)=1.764, pressure
p(0)=0.156, temperature T(0)=0.42, and radius R~ 12.27,
with no external atmosphere, is formed, as displayed in the
left panel of Fig. 1. Using the Laplace formula the surface
tension is o=p(0)R~1.91. Nugent and Posch [28] obtained
o=4.2 for a similar stable circular drop. Compared to our
drop model, their higher value of the surface tension is pri-
marily due to their circular drop having a comparatively
larger radius (R=22.2), which is about twice the radius of the
circular drop shown in Fig. 1. The evolution of the kinetic
(K) and thermal (U) energies for this drop is displayed in
Fig. 2. At t=600, when the calculation is terminated, K— 0
and U tends to a negative constant value, implying that the
drop is in thermomechanical equilibrium.

Due to the crippling deficiency of particles at the borders
of the initial square array, the use of Eq. (12) produces den-
sities there that are lower than the uniform value carried by
the interior particles. As a result, a smooth density profile,
rather than a discontinuous jump, forms at the drop bound-
ary, which allows the surface evolution to proceed stably
without any particular treatment of the outer boundary. As in
Nugent and Posch [28], we use the attractive central forces,
due to the cohesive term in Eq. (10), to handle surface ten-
sion effects. In this method, the cohesive contributions to the
acceleration and heating, namely

4
3
2
! K
0
-1 U
2 b
-3
4 . . ‘ ‘
0 1 2 3 4 5 6

1072t

FIG. 2. Time variation of the kinetic (K) and thermal (U) ener-
gies during the evolution, leading to the equilibrium, circular drop

shown in Fig. 1. For convenience, K=K/10 and U=(U+2640)/10
are plotted instead of K and U. All quantities are in reduced units.

3 321 01 2 3
107

dv :
dt =
and
N
dU;
—t = 2&2 m,(VJ - Vi) . VIWZI, (26)
dt P

respectively, are evaluated separately from all other SPH
terms. Here W§=W(|xl-—xj ,H), where H=2h,. Equation
(25) strongly resembles that used by Morris [38] to estimate
the surface normals for calculating interfacial curvatures
with SPH using the continuum-surface-force (CSF) method.
The above choice of H is then determined by the same con-
siderations that led to improved interfacial stability with the
CSF method [38]. The forces represented by Eq. (25) largely
cancel within the drop, except for a small strip H around the
drop surface, where the particles are accelerated in the direc-
tion of the inward surface normal. This translates into a net
surface tension due to the local curvature.

IV. OSCILLATING VISCOUS DROPS

We consider the oscillatory motion of drops that are re-
leased from an initial (static) elliptic deformation. The refer-
ence circular drop is deformed into an elliptic shape by ho-
mogeneous flattening under pure shear strain [39]. This
involves an area-preserving coordinate transformation, given

y, O 1+E ’

where the parameter € is the elongation and 1+e€ is the
stretch. The above transformation will convert the circle into
an ellipse whose semimajor axis « is aligned with the y axis,
as shown in Fig. 1. As the drop is deformed into an ellipse,
the interparticle spacing stretches in the x direction and ex-
pands in the y direction. For strong flattening (i.e., large pro-
late aspect ratios), the interparticle separation in the x direc-
tion becomes much smaller than along the y direction, and so
the isotropic (circular) smoothing length can become signifi-
cantly larger than the mean interparticle spacing along the
direction of flattening, while becoming significantly smaller
than the mean interparticle spacing in the transverse direc-
tion (of maximum drop elongation). The former mismatch
reduces the spatial resolving power of the method, while the
latter causes neighboring particles to lose contact, and may
lead to unstable behavior. A number of test calculations with

27
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increasing drop flattening shows that with a circular smooth-
ing length the method can only follow the oscillations of
drops with initial aspect ratios a/b=35. For larger aspect ra-
tios, it is necessary to revert to an anisotropic smoothing
kernel that adjusts so as to follow the changes of the local
mean interparticle spacing with direction around each fluid
element [40]. Hence, for very elongated drops the smoothing
kernels would no longer be circular but rather elliptical, with
their semimajor axes aligned with that of the main drop.
Here we shall consider only initial drop deformations with
a/b=<4, and defer both the implementation of the above re-
finements and the evolution of liquid filaments for a next
paper. Returning to Fig. 1, the semimajor and semiminor
axes of the elliptical drops obey the relations a=(1+¢)R and
b=R/(1+¢), respectively, where R is the radius of the unper-
turbed drop. The initial shape of the drop is therefore given
by

cos’ ¢ sin’

-1/2
f(¢’0) = ( 2 b2 ) > (28)

for 0= ¢p<2m.

The models are parametrized by the Reynolds number Re,
the initial prolate aspect ratio a/b, and the Péclet number
Pe=c,(poR)"?/k, where c, is the specific heat at constant
pressure. The latter number is a measure of the importance of
heat conduction. The effects of varying the initial aspect ratio
from a/b=1.2 to 4 are studied for drops with low Reynolds
number in the range between Re=~6.27 and =62.69. Two
independent sequences of models with fixed a/b (=1.5 and
3) each are also defined for drops with 0.52<Re =<522. Fi-
nally, the coefficient of heat conduction is varied in the range
1=k=10 for drops with Re=~62.69 and aspect ratios a/b
=1.5 and 3, providing two additional sequences of models
with 0.015=Pe=<0.15. In all cases, the coefficient of bulk
viscosity was taken to be {=0.1. Due to the liquid incom-
pressibility, test calculations with varied { and keeping all
other parameters the same have produced almost undistin-
guishable results.

The surface energy E¢ per unit length, or “line” energy of
the elliptic drop, measured relative to a circular drop having
the same area, is given by

L

2
2+ 2 1/2d _1’ 29
k) s as 29)

Eg=
where f, is the ¢ derivative of the shape function (28). In the
previous equation, energy is measured in units of 27Ro,
which is the surface energy per unit length of an infinitely
extended cylinder of radius R. Figure 3 depicts the variation
of the line energy with the initial aspect ratio over a wide
range of elliptic deformations. During its oscillations, the
drop may pass through transient contours that will not fit a
perfect ellipse due to nonlinear coupling of the oscillation
modes. It is therefore necessary to track the drop contour
numerically during its deformation. With SPH, this is done in
a very straightforward manner by identifying the boundary
particles at each time step. Using their Cartesian coordinates
(x3,vp), defined with respect to the drop’s center of mass, we
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FIG. 3. Surface energy per unit length, E, for the initial elliptic
drop shapes (solid line with filled dots) as a function of the maxi-
mum prolate aspect ratio, a/b. Also shown are the corresponding
surface energies of initially prolate spheroidal drops (solid line with
open circles).

may then calculate their azimuthal angles, ¢,=tan™'(x,/y,),
measured with respect to the positive y axis (¢=0), and their
radial distances, r,=y, cos ¢,, from the center of mass. The
radii of all boundary particles then provide a discrete set of
values that define the shape function, f;.

The time resolved evolution of a highly viscous (Re
=~ 6.27) drop released from an elliptic a/b=4 deformation is
shown in Fig. 4 during its first period of oscillation. Ex-
pressed in units of the critical time ¢.=(pR3/ o), the first
period (z=109) is 7, =2.7065, while the aspect ratio at that
time is a/b=1.2. The aspect ratio decays further to =1.049
at the end of the second period (7,~4.7427, in units of ¢,).
Thereafter the drop undergoes very small oscillations about
an approximate circular shape. For comparison, Fig. 5 shows
a sequence of shapes that result when a similar elliptic drop
is released at Re=62.69. In this case, the drop completes its
first oscillation period after a longer time #/t,~2.905 (¢
=115), achieving a much larger aspect ratio a/b=~2.3. The
shapes depicted in Fig. 5 strongly resemble those found by
Basaran [14] at Re=100 for a drop released from a prolate
spheroidal shape with a/b=3. The re-entrant (concave)
shape visible in Fig. 5 at t=57 (or #/1,=1.4153) is typical of
real oscillating drops released from prolate/oblate shapes at
moderate and high Re at the time of maximum oblateness/
prolateness. This feature has also been observed in micro-
gravity experiments of oscillating water drops at Re=600
[27]. Linear theory predicts that the drop shape should also
be re-entrant at the end of each period. However, the
asymptotic results of Tsamopoulos and Brown [9] and the
finite-element calculations of Basaran [14] have shown that
this feature may be absent for large-amplitude oscillations, in
good agreement with the result of Fig. 5 at r=115.
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FIG. 4. Shapes during the first oscillation period that result when a liquid drop is released from an elliptic deformation with aspect ratio
a/b=4 (t=0) at Re=6.27. In each panel the time is shown in reduced units.

The internal flow field is depicted in Fig. 6 for the oscil-
lating drop shown in the sequence of Fig. 5. In order to
compare with the photographic patterns of Trinh and Wang
[23] (see their Fig. 12), showing the internal flow field of a
silicon oil drop oscillating in the n=2 mode, we have chosen
four distinct times all corresponding to the stage toward the
point of maximum flatness (r=57 in Fig. 5). At =18, when
the elliptic drop is contracting along its semimajor axis, a
counterflow develops, which at this time is mainly limited to
the end caps of the still prolate drop. As the drop contracts
further and passes through an approximate circular shape, the
counterflow transforms into a nearly steady drifting motion
(¢=25). At this time, the drift involves mostly the outer parts
of the drop and causes an outflow directed along the x axis.
As the drop deforms into an oblate shape, the steady drift
spreads into the inner drop regions (#=35). Note, however,
that the center of the drop remains nearly motionless. A very
similar behavior was observed in the experiments of Trinh
and Wang [23]. In particular, the patterns shown in the
upper-right and bottom-left panels of Fig. 6 reproduce fairly
well the flow pictures in their Fig. 12, except for the devel-
opment of a fourfold circulatory flow pattern on each side of
the intersecting coordinate axes. However, they interpreted

the appearance of internal circulation as probably caused by
the asymmetry in the acoustic field. We also note that the
internal flow remains subsonic as the maximum velocities
are always much smaller than the speed of sound c,~4.81.
At t=57, when the drop reaches its maximum flatness most
of the undamped internal kinetic energy goes into surface
energy.

Figures 7 and 8 compare the damped oscillations of a
drop at Re=6.27 and =62.69, respectively, when the initial
deformation is varied from a/b=1.2 to 4. The damping is
mostly due to viscous dissipation and, to some extent, to the
finite heat conductivity (k=5, Pe=0.029). A value of « this
large was used to obtain fast temperature adjustment and
reduce density fluctuations in the drop. As was shown by
Nugent and Posch [28], the intrinsic viscosity that is inherent
to particle systems may also contribute to damping, even for
vanishing 7. However, a test with #=0 and x=0 confirms
that the damping rate due to this latter effect is effectively
much slower than that due to either finite physical viscosity
or heat conductivity. As expected, wave damping is stronger
for Re=6.27 than for Re=62.69. When the initial aspect
ratio is increased for fixed Re, the amplitude of the oscilla-
tions increases and the first period is attained at progressively
longer times. As we shall see later, in the present disklike

T T T

Fr=34 b

FAI; i 1 ) i

2 -1 0 1 2 2 -1 0 1 2
107 10" x

FIG. 5. Shapes during the first oscillation period that result when a liquid drop is released from an elliptic deformation with aspect ratio
a/b=4 (t=0) at Re=62.69. In each panel the time is shown in reduced units.
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FIG. 6. Internal velocity field at four distinct times during the
stage towards the point of maximum flatness for the oscillating drop
shown in the sequence of Fig. 5. The time and the maximum ve-
locity are given in reduced units. Only 40% of the actual number of
particles is shown for clarity.

drop models the damping effects of heat conduction are
much stronger for small-amplitude motions. For large-
amplitude oscillations surface tension forces are likely to be
more important. This can be better understood with the help
of Fig. 3, where the line energy of an elliptic drop is com-
pared with the surface energy of a prolate spheroidal drop for
various aspect ratios. We see that for small deformations
(a/b=<2) there is not much difference between these ener-
gies. However, at larger aspect ratios the line energy of an
infinitely flattened drop becomes progressively greater than
the surface energy of a prolate spheroidal drop, implying that
a greater force is required to deform an ellipse into large
aspect ratios. This may explain why the oscillations shown in
Figs. 7 and 8 for initial aspect ratios a/b=3 get damped out
after a fewer number of periods compared to those experi-
enced by similarly deformed elongated spheroidal drops
[14,17].

4 -
4 ab=1.2
ab=1.5 <
3 a/b=2.0
a/b=3.0
a/b=4.0 -

102t

FIG. 7. Variation of the drop aspect ratio, a/b, with time for
different initial elliptic drop deformations at Re= 6.27. The time is
given in reduced units.
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FIG. 8. Variation of the drop aspect ratio, a/b, with time for
different initial elliptic drop deformations at Re =~ 62.69. The time is
given in reduced units.

Decomposition of the drop shape into its linear modes is
accomplished by expanding the shape function, f(¢,1), in
terms of the cosine Fourier series,

fian-1=20 43 e oeostnad). G0)

n=1

where the coefficients c,(¢) are the mode amplitudes, which
can be expressed as cosine integrals of f(¢,r)—1 over ¢,
after use of the orthogonality condition of the cosine func-
tions. The integrals are here approximated by means of Rie-
mann summations over all boundary particles, using the dis-
crete numerical values f,—1. In particular, Fig. 9 shows the
calculated amplitudes of the first leading Fourier modes ver-
sus time for the drop shape sequence of Fig. 5 (the dot-
dashed wave in Fig. 8). We see that the primary n=2 mode
dominates the other modes. For oscillation amplitudes this
large the deformation shows clear signs of other harmonics
in contrast to the a/b=<?2 cases, where higher-order modes,
with the exception of the n=4 and perhaps n=6 modes, keep
essentially at a level of pure noise. This feature agrees with
the results of previous calculations of small-amplitude drop
oscillations with arbitrary viscosity. Because of viscous dis-
sipation the frequency of the primary n=2 mode is shifted
with respect to its natural (Rayleigh) frequency, w,f.= V6.
The zeroth- and higher-order modes are excited by nonlinear
coupling with the second mode. In particular, the linear fre-
quency of the fourth mode, wyr.=215, is about three times
larger than that of the second mode. A close inspection of
Fig. 9 shows that the first minimum of the n=4 amplitude
appears at about one-third of the time at which the minimum
of the n=2 amplitude occurs. Due to dissipational effects, the
frequency of the n=4 mode also shifts and becomes twice
that of the primary n=2 mode. Also, the zeroth mode is
excited at twice the frequency of the second mode, while the
sixth and the eighth modes are excited at approximately
twice the frequency of the fourth mode. In contrast, linear
theory predicts that the natural frequencies of the n=6 and
n=38 modes are about 1.87 and 2.90 times higher than that of
the n=4 oscillation mode. Small asymmetries are present in
the transient shapes displayed in Figs. 4 and 5 due to the
excitation of odd modes (essentially the n=3 mode). Since
the amplitudes of these modes always keep at a low level
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FIG. 9. Temporal variation of the amplitudes, c,, of the first nine
Fourier modes for the shape sequence shown in Fig. 5. The ampli-
tudes are expressed in terms of the radius R of the unperturbed
circular drop and the time is given in reduced units.

(see Fig. 9), only small asymmetric drop surface displace-
ments occur during the first oscillation period. Compared to
most previous grid-based calculations, surface asymmetries
are expected with SPH because the internal motion is not
constrained by symmetry conditions needed to maintain
regularity of the velocity field at singular points (or regions)
of a specific coordinate system. In passing, we note that non-
zero odd-mode amplitudes were also reported by Patzek et
al. [18] in their Galerkin/finite-element, two-dimensional
calculations of the finite amplitude oscillations of a nonrotat-
ing, inviscid drop starting from an n=4 initial deformation
(their Figs. 23 and 24). The time at which the downward (for
n=1, 6, and 8 modes) and upward (odd modes with n=3)
spikes occur in Fig. 9 coincides with the time of the first
minimum of the n=2 mode amplitude, suggesting a kind of
resonant interaction between these modes and the second
one. While this feature is typical of large-amplitude oscilla-
tions at high Re, similar amplitude variations to those shown
in Fig. 9 were obtained for all other oscillating drops. More-
over, it is clear that the effect of viscosity is to damp out the
higher modes faster than the lower ones, a feature that is also
in accordance with the results of previous calculations of
oscillating axisymmetric drops [14,16].

The effects of increasing the strength of the viscous forces
over the inertial ones for large-amplitude (a/b=3) drop os-
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FIG. 10. Effects of Reynolds number on large-amplitude oscil-
lations when the drop is released from an elliptic deformation with
al/b=3. A transition from periodic to aperiodic wave decay occurs
at Re=1. The time is given in reduced units.

cillations are shown in Fig. 10. We may see that the calcula-
tions predict a change in the regime of the oscillations from
underdamped (periodic) when 5<Re=<>522, to critically
damped when Re=1, corresponding to a fast aperiodic return
to the circular rest state, and then to overdamped when Re
~(.5, corresponding to a slower aperiodic decay mode that
dominates the motion at large times [6,8]. For infinitesimal-
amplitude oscillations of viscous drops, Prosperetti [8] pre-
dicted the same effect. We also find that for small-amplitude
(a/b=1.2) oscillations, the response for both Re=1 and 0.5
is a slow overdamped aperiodic return to the circular shape,
while aperiodic critical damping was seen to occur at a
slightly higher Re(=1.1). Note that for globular drops, Basa-
ran [14] and Meradji et al. [17] predicted a transition from
underdamped periodic oscillations to an aperiodic decay
mode for 1.3<Re<1.4 and 1.2<Re< 1.4, respectively,
when the drop is released from a second-harmonic shape
with initial a/b=1.015.

The percentage change in frequency during the first pe-
riod of oscillation as a function of the initial aspect ratio is
displayed in Fig. 11 for Re=6.27, =31.35, and =62.69. The
curves are compared with the experimental results of Trinh
and Wang [23]. Also shown are the trends predicted by per-
turbation analyses [9] and previous axisymmetric calcula-
tions of inviscid and viscous fluctuating globular drops
[13,14]. The frequency change is measured relative to the
Rayleigh n=2 frequency given by Eq. (2), which applies to
infinitesimal-amplitude oscillations of planar, inviscid drops.
The relative change in frequency decreases with increasing
aspect ratio for all Re>Re,_., where Re. marks the transition
from periodic to aperiodic decay. For moderate to large am-
plitudes, the quadratic decrease of the oscillation frequency
with the initial aspect ratio is fairly well reproduced as Re
gets large. Compared to the axisymmetric models of Basaran
[14], the present two-dimensional calculations predict a rela-
tively faster decrease of the frequency at small initial defor-
mations, especially in drops with low Re, possibly due to the
additional dissipative effects of heat conductivity, which
were not accounted for in his calculations. At larger defor-
mations, however, the quadratic decrease of the oscillation
frequency is fairly well reproduced for Re=31.35 and 62.69.

Finally, Figs. 12 and 13 show the dependence of the decay
factor, defined as
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FIG. 11. Percentage change in frequency of the n=2 mode dur-
ing the first period of oscillation as a function of the initial prolate
aspect ratio for Re~6.27 (dotted line), =31.35 (dashed line), and
~62.69 (dot-dashed line). The results are compared with the ex-
perimental results of Trinh and Wang [23] for drops of volume
0.5 cm? (asterisks) and 1 cm? (crosses); the asymptotic prediction
of Tsamopoulos and Brown [9] (solid line); the finite-element cal-
culations of Patzek er al. [13] for inviscid drops (plus signs); and
the finite-element calculations of Basaran [14] for Re=10 (open
circles) and Re=100 (filled dots).

i=

1 ((a/b)fl._l -1
N e i

=i _1> (i=1,2,...), (31

7i
with the initial aspect ratio and the Reynolds number, respec-
tively. In Eq. (31), the subscript i denotes the period number
and the plots in Figs. 12 and 13 refer to the decay factor
during the first period of oscillation when i=1. For conve-
nience, I'; is multiplied by 100 because the evolutionary time
t, rather than #/¢., has been used to evaluate the period 7 in
Eq. (31). We see from Fig. 12 that the decay factor during the
first period of oscillation decreases with increasing a/b. The
decrease in frequency is more pronounced at lower Re. How-
ever, as the Reynolds number increases, the decay factor
becomes fairly insensitive to the initial disturbance ampli-
tude. This behavior contrasts with the results of Basaran
[14], who found that the decay factor increases with increas-
ing aspect ratio. This discrepancy can be understood in terms
of the increasing dissipative effects of heat conduction for
small-amplitude oscillations. In particular, the effects of heat
conduction were tested here on small- and large-amplitude
oscillations by varying the coefficient of heat conductivity
from k=1 (Pe=0.147) to 10 (Pe=0.015) at Re=62.69. For
small initial deformations (a/b=1.5), the prolate elongation
at the end of the first period decreases as long as « is in-
creased, implying that higher conductivity leads to less elon-
gated shapes. In particular, for k<3 (i.e., Pe=0.049) the
oscillations are strongly damped over a few periods, while
for k=5 (Pe<0.029), starting from the second period, the
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FIG. 12. Decay factor of primary n=2 mode during the first
period of oscillation as a function of the initial prolate aspect ratio
for various Reynolds numbers.

oscillations decay very slowly, taking more than about 14
periods to get damped out. Conversely, when the initial as-
pect ratio is increased to a/b=3, the difference in the elon-
gated shapes at the end of the first period are much less
pronounced and the oscillation pattern becomes insensitive
to variations in k. Thus, for large-amplitude oscillations the
dynamics is primarily governed by the interplay between vis-
cous and inertial forces, while for small amplitudes dissipa-
tion is dominated by the combined effects of viscosity and
heat conduction.

The dependence of I'; with Re is depicted in Fig. 13 for
a/b=1.5 and 3. When Re is varied from ~5 to ~50 the
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FIG. 13. Decay factor of primary n=2 mode during the first
period of oscillation as a function of the Reynolds number for drops
released from an initial elliptic deformation with a/b=1.5 and 3.
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decay factor drops from about 5X 1072 to approximately 1
%1072 for a/b=1.5 and only from about 3X 1072 to ~1
X 1072 when a/b=3. For Re =50, it becomes almost insen-
sitive to variations in the Reynolds number. This explains
why drop oscillations at moderate and large Re take longer to
get damped out, regardless of the initial deformation.

V. CONCLUSIONS

In this paper we have used standard smoothed particle
hydrodynamics (SPH), coupled with an adaptive density ker-
nel estimation procedure [30], to investigate the nonlinear
oscillations of heat-conductive, viscous, planar drops that are
released from a static elliptic deformation in a vacuum sur-
rounding with zero gravity. Three dimensionless parameters
govern the nonlinear oscillations: the Reynolds number (Re),
the Péclet number (Pe), and the initial prolate aspect ratio
(a/b). Attention here has been focused on small- to large-
amplitude oscillations (1.2<a/b=<4) for 0.5=<Re =522 and
0.015=Pe=0.15, respectively.

The numerical results show that for small-amplitude os-
cillations (a/b=<2) damping is due to the combined effects
of viscous dissipation and heat conduction, while for large-
amplitude oscillations (a/b=3) the action of viscous dissi-
pation and surface tension forces govern the motion. The
drop shape evolutions for (a/b=3) and Re =60 strongly re-
semble those for axisymmetric drops that are released from a
prolate spheroidal shape [14,17] and those reported from mi-
crogravity experiments of fluctuating water drops on board
the Space Shuttle Columbia [27]. Modal decomposition of
the oscillations show that the amplitude of the primary
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n=2 mode dominates the motion, while the presence of
higher harmonics is due to nonlinear coupling with the pri-
mary mode, in accordance with predictions from perturba-
tion analyses [9].

The calculations also show that for large-amplitude oscil-
lations, the transition from periodic to aperiodic decay occurs
at Re=1, while for small amplitudes (a/b=1.2) the transition
occurs at Re=~ 1.1, in agreement with the trends established
by previous finite-element calculations [14,17]. The qua-
dratic decrease of the frequency for moderate and large ini-
tial deformations at large Re is also reproduced. We find that
in general the decay factor increases with decreasing Re and
becomes fairly insensitive to the initial deformation for Re
=50. Moreover, the effects of heat conduction causes an
increase of the decay factor with decreasing initial aspect
ratio in contrast with previous findings that indicate the con-
verse for oscillating viscous drops with no heat conduction
[14].

In future papers, we will consider extensions and refine-
ments of the present method to calculate the nonlinear oscil-
lations of both fully three-dimensional globular drops and
the evolution of long liquid filaments. In particular, the in-
clusion of an anisotropic smoothing kernel along with the
adaptive kernel estimation procedure will result in a substan-
tial increase in the resolving power of the SPH method for
the same total number of particles, without any correspond-
ing increase in computational run time.

ACKNOWLEDGMENTS

This work was financially supported by the Instituto Ven-
ezolano de Investigaciones Cientificas (IVIC).

[1] Lord Rayleigh, Proc. R. Soc. London 29, 71 (1879).
[2] Lord Kelvin, in Mathematical Papers (Clay & Sons, London,
1890), Vol. 3, p. 384.
[3] H. Lamb, Hydrodynamics (Cambridge University Press, Cam-
bridge, England, 1932).
[4] S. Chandrasekhar, Proc. London Math. Soc. 9, 141 (1959).
[5] W. H. Reid, Q. Appl. Math. 18, 86 (1960).
[6] C. A. Miller and L. E. Scriven, J. Fluid Mech. 32, 417 (1968).
[7] P. L. Marston, J. Acoust. Soc. Am. 67, 15 (1980).
[8] A. Prosperetti, J. Fluid Mech. 100, 333 (1980).
[9]J. A. Tsamopoulos and R. A. Brown, J. Fluid Mech. 127, 519
(1983).
[10] G. B. Foote, J. Comput. Phys. 11, 507 (1973).
[11] C. T. Alonso, in Proceedings of the International Colloquium
on Drops and Bubbles, edited by D. J. Collins, M. S. Plesset,
and M. M. Saffren, Jet Propulsion Laboratory, 1974, p. 139.
[12] T. S. Lundgren and N. N. Mansour, J. Fluid Mech. 194, 479
(1988).
[13] T. W. Patzek, R. E. Benner Jr., O. A. Basaran, and L. E.
Scriven, J. Comput. Phys. 97, 489 (1991).

[14] O. A. Basaran, J. Fluid Mech. 241, 169 (1992).

[15] E. Becker, W. J. Hiller, and T. A. Kowalewski, J. Fluid Mech.
258, 191 (1994).

[16] F. Mashayek and N. Ashgriz, Phys. Fluids 10, 1071 (1998).

[17] S. Meradji, T. P. Lyubimova, D. V. Lyubimov, and B. Roux,
Cryst. Res. Technol. 36, 729 (2001).

[18] T. W. Patzek, O. A. Basaran, R. E. Benner, and L. E. Scriven,
J. Comput. Phys. 116, 3 (1995).

[19] R. M. S. M. Schulkes, J. Fluid Mech. 309, 277 (1996).

[20] P. K. Notz and O. A. Basaran, J. Fluid Mech. 512, 223 (2004).

[21] P. Marston and R. Apfel, J. Colloid Interface Sci. 68, 280
(1979).

[22] D. M. Herlach, R. F. Cochrane, 1. Egry, H. J. Fecht, and A. L.
Greer, Int. Mater. Rev. 38, 273 (1993).

[23] E. Trinh and T. G. Wang, J. Fluid Mech. 122, 315 (1982).

[24] E. Becker, W. J. Hiller, and T. A. Kowalewski, J. Fluid Mech.
231, 189 (1991).

[25] M. Popoular and C. Parayre, Phys. Rev. Lett. 78, 2120 (1997).

[26] T. G. Wang, A. V. Anilkumar, and C. P. Lee, J. Fluid Mech.
308, 1 (1996).

051201-11



H. LOPEZ AND L. Di G. SIGALOTTI

[27] R. E. Apfel, Y. Tian, J. Jankovsky, T. Shi, X. Chen, R. G. Holt,
E. Trinh, A. Croonquist, K. C. Thornton, A. Sacco, Jr., C.
Coleman, F. W. Leslie, and D. H. Matthiesen, Phys. Rev. Lett.
78, 1912 (1997).

[28] S. Nugent and H. A. Posch, Phys. Rev. E 62, 4968 (2000).

[29] A. Tartakovsky and P. Meakin, Phys. Rev. E 72, 026301-1
(2005).

[30] B. W. Silverman, Density Estimation for Statistics and Data
Analysis (Chapman & Hall, London, England, 1996).

[31] L. Di G. Sigalotti, J. Klapp, E. Sira, Y. Meledn, and A. Hasmy,
J. Comput. Phys. 191, 622 (2003).

[32] L. Di G. Sigalotti, H. Lépez, A. Donoso, E. Sira, and J. Klapp,
J. Comput. Phys. 212, 124 (2006).

[33] J. Bonet and T.-S. L. Lok, Comput. Methods Appl. Mech. Eng.

PHYSICAL REVIEW E 73, 051201 (2006)

180, 97 (1999).

[34]J. P. Morris, P. J. Fox, and Y. Zhu, J. Comput. Phys. 136, 214
(1997).

[35] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon,
Oxford, England, 1987).

[36] L. Di G. Sigalotti and H. Lépez, Comput. Math. Appl. (to be
published).

[37] L. B. Lucy, Astron. J. 83, 1013 (1977).

[38] J. P. Morris, Int. J. Numer. Methods Fluids 33, 333 (2000).

[39] R. J. Twiss and E. M. Moores, Structural Geology (Freeman,
New York, 1992).

[40] P. R. Shapiro, H. Martel, J. V. Villumsen, and J. M. Owen,
Astrophys. J., Suppl. Ser. 103, 269 (1996).

051201-12



